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Abstract. Involving users during the matching process has been identified as one
of the challenges facing the ontology alignment community. Users are typically
involved in the validation phase of automatically generated alignments. In this
paper we identify and discuss issues that are important when dealing with user
validation in ontology alignment. These issues pertain to the user profile as well
as the user interfaces and services of the ontology alignment systems. We also
provide an overview of how current systems deal with the identified issues. Using
experiments from the Interactive matching track of the Ontology Alignment Eval-
uation Initiative (OAEI) 2015, we further investigate the rarely discussed topic of
user expertise and demonstrate the impact of user knowledge on the alignment
quality.

1 Introduction

The growth of the ontology alignment area in the past years has led to the development
of many ontology alignment tools. In most cases ontology alignment systems apply
fully automated approaches where an alignment is generated for a given pair of input
ontologies without any interruption of the process. However, it has become clear that
user involvement in the alignment process is needed for several reasons, and nearly
half of the challenges facing the ontology alignment community identified in [47] are
directly related to user involvement. These include explanation of matching results to
users, fostering user involvement in the matching process and social and collaborative
matching. The lack of evaluation of the quality and effectiveness of user interventions
has been identified as one of the general issues after six years of experience in the
Ontology Alignment Evaluation Initiative (OAEI) [12].

One important reason for user involvement is the quality of the alignments in terms
of correctness and completeness. By allowing a domain expert to validate the align-
ments, wrong mappings may be detected and removed. A domain expert may also be
able to add mappings not detected by the systems. This is in line with the observation
by the OAEI organizers [12] that automatic generation of mappings is only a first step
towards a final alignment and a validation by a domain expert is needed. Although do-
main experts can make mistakes, experiments in [26] suggest that as long as the error



rate is less than 30%, the validation is beneficial. Further, it has been shown in exper-
iments that introducing domain expert knowledge already in the alignment generation
phase could significantly improve the results and is essential for use cases requiring
very accurate mappings [26]. There may also be an upper bound on the fully automatic
ontology alignment in terms of precision, recall and F-measure [42]. This has been hy-
pothezised based on the OAEI experience as well as by the fact that, although alignment
techniques have become more advanced, comparable improvement of the alignments
has not been achieved [21]. User involvement can also have an impact on the alignment
process by adjusting system settings and by taking user knowledge into account in the
system algorithms.

Although there have been earlier efforts to deal with user intervention and the identi-
fication and evaluation of the requirements and techniques (mostly user interfaces, e.g.,
[14, 17, 21, 28]), recently, with the realization of its importance, this problem is gaining
more and more attention. For instance, the Interactive Matching track was introduced
in the OAEI 2013 campaign [42] where user validation was simulated using an oracle.
The number of user interventions and the time between them were also measured in
addition to the influence of the validation on the quality of the alignments. The track
was extended in 2015 to also deal with non-perfect domain experts as well as other use
cases. In [24] requirements for fostering user support for large-scale ontology alignment
were identified and current systems were evaluated.

In this paper we focus on the most common kind of user intervention in ontol-
ogy alignment systems, i.e., user validation. We chose this kind of user intervention
as all systems that support user intervention support some kind of validation of align-
ments. Furthermore, validation decisions have a large influence on the quality of the
alignments. They can also be used to improve the alignment process and make the pro-
cess more efficient. Our contributions include (i) the identification of issues that are
important when dealing with user validation in ontology alignment (Section 2). These
issues pertain to the user as well as the user interfaces and the services of the ontol-
ogy alignment systems. Further, based on the literature, (ii) we provide an overview
of how current systems deal with the identified issues (Section 3). Using experiments
from the Interactive matching track of the OAEI 2015 campaign, (iii) we investigate the
rarely discussed topic of user expertise and show the impact of user knowledge onto the
alignment quality (Section 4).

2 Issues regarding user validation

We have identified a number of issues related to the user validation in ontology align-
ment by reviewing existing systems and literature related to ontology alignment as well
as using our long experience in the field. Ontology alignment is a complex task where
users are usually actively involved during the validation of automatically computed
mappings. It consists of a number of steps where the users need to first become familiar
with both ontologies and their formal representations, grasp ontology modelers’ views
and then understand and decide on the mappings provided by the system (in possibly
large-scale cases) or create mappings by themselves [15]. These tasks are cognitively
demanding and involve increasing memory load and decision making and are inherently



error-prone because of different levels of expertise, misinterpretations, human biases,
etc. [17].

We have addressed these aspects with three categories of issues: issues related to
the user expertise (Section 2.1), regarding errors, their impact and approaches to handle
varying degrees of expertise; the system services (Section 2.2), concerning how sys-
tems formulate user interactions and how they capitalize on user input; and the user
interfaces (Section 2.3), focusing on the impact of visualization and interaction strate-
gies on alignment.

2.1 User expertise

An aspect that influences the quality of the validation is the expertise of the users that
validate the mapping suggestions.

A first issue is the knowledge of the user. In [33] different kinds of oracles rep-
resenting different levels of user knowledge were discussed. The ideal oracle is an
all-knowing user which always validates mapping suggestions in a correct way. The
partially correct oracle represents a user who knows part of the domain well. If a map-
ping suggestion is validated as a correct mapping, it is correct. Otherwise the mapping
suggestion may be wrong or the user does not know. An approximation of this case is
when using several users (e.g., [6]) and a skeptical approach, where we only consider
a mapping suggestion to be a correct mapping if all domain experts agree on the cor-
rectness of the mapping suggestion. Users make mistakes (e.g., [4, 22]). One way of
measuring the impact of the mistakes is by simulating the user by an oracle with dif-
ferent error rates. In this paper we investigate domain experts who for each validation
make a mistake with a probability of x%. In the fully automatic alignment case, there is
no domain expert and all mapping suggestions are assumed to be correct.

While important, possible user errors are often disregarded in the existing tools. For
example, in [26] user validated relations are fixed, meaning that during the next phase
of alignment repairing user validated relations cannot be removed from the final align-
ment. An implication is that a user error can propagate and that in the repairing phase
some other correct relations are removed. Some actions such as ambiguity removal and
showing only those mapping suggestions which do not introduce unsatisfiable classes
are ways of limiting the impact of erroneous user validations. In another approach [23]
if a user makes contradicting validations the system will raise a warning. In a multi-user
setting errors may be taken into account using a voting strategy, such that the mapping
confidence is proportional to the consensus on the mapping [6].

Another issue pertaining to this discussion is the area of expertise of the user, i.e.,
the difference between the knowledge engineers and domain experts. As ontologies are
often domain specific, domain specific knowledge is needed to map them. However,
domain experts are often not familiar with knowledge engineering concepts and formal
representations (e.g., [4]). In the early days of the knowledge-based systems the role
of the domain expert was to provide the domain specific knowledge to the knowledge
engineer who was responsible to make it available to the expert system [20]. Later on
tools like Protégé aimed to help the domain experts to encode domain knowledge given
some training. Although the differences between these two user types are important for
the design of every knowledge-based system, there are not many investigations that aim



to formally reveal these differences so they can be addressed when building suitable
tool support.

Another aspect that is important is the experience of the user with the tool. Tools
should support both novice and expert users [38]. The usability of the tool should be
such that novice users can focus on the matching process instead of the tool usage.
Expert users should be able to use shortcuts and can customize the tool in order to
speed up their work.

2.2 System services

Based on when the validation is performed, the systems can use the validation decisions
in different ways (stage of involvement). In the case of validation done before - {Sys.a}
the matching process, the user provides an initial set of mappings (partial alignment,
PA) which are then used by the system to guide the matching process. This can be done
in several ways. Some approaches use a PA in the preprocessing phase to reduce the
search space [30] or in the matchers [11, 30]. Another use is to utilise the PA to compute
a recommendation for the configuration of the matchers’ parameters (e.g., [29, 44, 50]).

When the validation is performed after - {Sys.b} the automatic matching process,
many systems filter out mapping suggestions which are in conflict with user validations
before proceeding to the final reasoning and diagnosis phase [23, 26, 31, 40]. While user
involvement at the end of the matching can be valuable as a way of filtering mapping
suggestions, systems can benefit from user involvement during the matching process as
it can be used to guide the process. In addition, this type of interaction gives a possibility
of discovering user errors and possible contradictions in the user validations.

If the validation is done during - {Sys.c} the matching, the user is providing di-
rect feedback to the system which can then be propagated so that the later recomputa-
tions made by the system are guided by the user’s feedback (feedback propagation,
{Sys.f}). Most of the existing approaches accept the user feedback as true and non-
debatable and in some cases give it priority over automatically generated mappings.
Several systems define a kind of neighborhood for the mappings. For instance, for struc-
tural algorithms it may be defined using ancestors and descendants of the concepts in
the mappings [31, 40, 45]. Other systems may define a neighborhood of the mappings
based on how similar the scores from different matchers are [7, 30]. Mapping confi-
dence is usually propagated from validated mappings to their neighborhood.

Many existing systems test user validated relations against the ontologies and report
on possible conflicts which violate the logic within the ontology (unsatisfiable classes,
inconsistencies) and possibly ask for revalidations of certain relations ({Sys.g}) to re-
solve the conflict. However, in most cases they will overlook user validations which are
wrong according to the domain but do not cause a conflict. One way to deal with these
is to involve multiple users in the validation process such as in [6]. The decisions on
whether to accept or reject a mapping can be based on the consensus of the users and
can be used to limit the validation of relations which are incorrect according to the do-
main. Ontology alignment is unlikely a single-person task and involving several users
addresses one of the ontology matching challenges.



Some tools also employ multiple iterations of the matching process ({Sys.d}) where
in each iteration an alignment from the previous iteration is improved [29]. In this case
the validation process might be done multiple times.

Another aspect that further complicates the matching problem and consequently
the user participation in the process, is the growing size and complexity of the ontolo-
gies. As users are a rare and valuable resource, limiting the user intervention is needed.
Reducing the user interventions, but at the same time effectively combining manual val-
idation with automatic computations is a challenge [26, 41]. Most existing approaches
limit the number of mapping suggestions (suggestions selection - {Sys.e}) by em-
ploying threshold values for different matchers. However, there are a number of more
advanced filtering approaches. One approach is to limit the number of mapping sug-
gestions by filtering them with respect to some principle, e.g., consistency, locality and
conservativity principles [25] or quality checks [3]. Several systems employ automatic
decisions for where a concept is suggested to be mapped to multiple concepts. When a
user validates a mapping suggestion as correct, then the other suggestions are automat-
ically validated as incorrect [26, 31]. Another approach for limiting user involvement
is to ask questions whose answers have the highest impact in the validation process.
This could be done by identifying the top suggestions on which different matchers dis-
agree [7] or by using a similarity propagation graph that allows for selecting the most
informative questions [45].

Aspects of user validation related to system services can be measured in a number
of ways. In order to evaluate the amount of user involvement in the matching process, it
is possible to measure the number of questions (mapping suggestions) the system asks
the user. This should be compared to the total number of pairs of concepts between
the ontologies or to the total number of mapping suggestions the system produces. The
impact that different measures for minimizing user involvement might have, can be
tested by comparing precision and recall. Given that user error and levels of expertise
can have significant impact on the matching results, these can be tested by simulating a
user with different error rates.

2.3 User interface

A graphical user interface (UI) is an indispensable part of every interactive system and
will enable efficient manual validation. Below we discuss features related to the vi-
sualization of the alignments and address basic and more advanced interactions to be
supported by ontology alignment systems in the context of reducing memory load and
supporting the decision making process.

2.3.1 Alignment Presentation
Visualizing ontologies and alignments takes advantage of the human’s most powerful
perception channel - the visual system and provides means for enhanced exploration.
Encoding properties of entities and mappings with different graphical primitives allows
to quickly convey information for them and their structure and compare them. Visu-
ally presenting information and making it easily retrievable will relieve the user from
remembering it. Reducing users’ working memory load is important given its limited



capacity (the working memory can hold 3±1 items [49]). For users new to a system
the UI related items compete for the capacity of their working memory. Grouping map-
pings together by different criteria is one way to reduce the items stored in the user
working memory and also helps in identifying patterns, such as regions with many/few
mappings, which otherwise will not be immediately perceivable {UI.d}. Visually de-
picting different types of mappings and their provenance makes this information readily
accessible to the users {UI.e}. A powerful technique adopted by many systems to ad-
dress these two points is color-coding. Providing the distinction between potential and
verified mappings has been identified as a requirement in a theoretical framework for
cognitive support during the alignment process based on cognitive and decision making
theories [17]. Many of the requirements from the framework aim to address the limited
capacity of the working memory—provide user annotations {UI.m}, context and defi-
nitions of terms {UI.f}, trial execution to help the user understand the consequences of
his actions {UI.i}, temporary mappings ({UI.o}, {UI.e}) and history of actions to keep
track of the sequences of his actions and revert them ({UI.a}). Other features can also
contribute to reducing the user memory load — maintaining the user focus in one area
of the ontology [40], preserving the user’s mental model, for instance, forced-directed
graph drawing algorithms may change the ontology layout after rerunning.

The Visual Information Seeking Mantra [46] defines seven high-level tasks to
be supported by information visualization interfaces which aim at enhanced data ex-
ploration and retrieval. Six of them were further refined for the purposes of ontology
visualization in [27]—overview, zoom, filter, details-on-demand, relate and history. Ad-
vanced search and filtering provide easy access to the information instead of recalling
it from memory. Several systems provide search services, but they have serious short-
comings [24]. Further, providing advanced navigation (e.g., linking and brushing [17,
35]) helps for enhanced exploration and retrieval of information.

The field of visual analytics, {UI.b}, combines data mining and interactive visual-
ization techniques with the powerful human visual system to aid analytic reasoning and
obtaining insights into (large) data sets. As ontologies and alignments grow in size and
complexity these techniques have the potential to quickly reveal information for large
alignments [7]. Some first attempts to visually support data analysis in ontology align-
ment were proposed in [32, 35]. In [32] an evaluation framework for ontology align-
ment strategies was developed and insights obtained for the alignment process were
showcased. In [35] two analytic questions that users attempt to answer for an alignment
were considered - are there any clusters in the data and what are the relationships be-
tween their members. Recently, [2] identified four analytic questions for which domain
experts need support from the tools and extended the visual analytics features of [5].

Alternative views {UI.c} provide complementary information and facilitate the
perception of different features ([5, 17, 29, 35]), e.g., multiple inheritance is easier to
perceive in graphs than in indented lists [19]. The views could be connected by inter-
active navigational techniques which greatly enhance the exploration, such as linking
and brushing, where selection in one of the views changes the presentation in the other.
Furthermore, different views would be more suitable for different alignment tasks [19].

Ontology alignment is by nature a decision making process where the user needs to
make a choice between a number of alternatives with the goal of most accurately rep-



resenting the relationships between two ontologies. As discussed in [49] “The primary
cognitive activity in decision making is the evaluation of each possible choice and the
determination of the one most likely to achieve current goals”. Recommendations and
ranking ({UI.g}), visual analytics interfaces ({UI.b}) and alternative views ({UI.c})
contribute to the decision making process by explicitly presenting different alterna-
tives and providing comparisons. An important support for the evaluation of possible
choices is the explanation of mapping suggestions. Two things are very relevant in
this context—presenting the provenance, or justification, of a mapping ({UI.h}), and
depicting the consequences of the user choice ({UI.i}). The latter is particularly rele-
vant for the decision making process when showing the consequences of user actions
helps the user in exploring and evaluating their choices and deciding how to proceed.

Justifications have been identified as one of the future challenges of ontology match-
ing [41]. While important, they are often only presented as confidence values. Some sys-
tems provide some information on the immediate parents/children of the terms involved
in the mapping ([23, 26]). In [15] the context and definitions of the terms involved in
the mapping as well as the reasons why it was suggested/accepted/rejected are iden-
tified and presented as provenance information to the user {UI.f}. The importance of
the context can be seen in a study in [39] where the authors compared crowdsourcing
(Amazon Mechanical Turk) with domain experts in a task where users had to verify hi-
erarchical statements in ontologies. The results have shown that domain experts achieve
better results, however when provided with concept definitions (in addition to concept
names) the difference between the two user types was not statistically significant. In
[17] some basic information in natural language on why a certain mapping was chosen
is provided, e.g., that two concepts were mapped because they have the same suffix.

Another aspect of the justifications is their complexity. In [13] three types of justi-
fications were identified since while provenance information and process traces might
be enough for expert users, these are not enough for ordinary users and possibly do-
main experts who lack knowledge of the ontology matching process. These types are
proof presentation, strategic flow and argumentation approach. In the proof presenta-
tion approach the explanation represents a proof of inference of a mapping suggestion
(depicted by either a formal proof or natural language or a visualization). For example,
in [48] simple and short natural language explanations without any technical details
are given; in [29] relevant parts of the ontologies are visualized. In the strategic flow
approach the explanation is in the form of a decision flow which describes the prove-
nance of the acquired mapping suggestion, e.g., in [10] these are in the form of depen-
dency graphs. Finally, in the argumentation approach, the system gives arguments for
or against certain mapping suggestions. These are often not used for explanations but
more as a way of achieving consensus in multi-user environments.

2.3.2 Alignment Interaction
Apart from the visual information seeking tasks discussed above, other interactions are
required to support the validation process. In the validation process the basic interaction
done by the user is to either accept or reject a certain mapping suggestion {UI.j}. It may
also happen that a system has not suggested a mapping that is needed according to the
user, in these cases the system has to provide functionality to add a mapping manually
{UI.k} (e.g., [1, 5, 16, 29]).



The functions above are mostly supported by the systems. Other identified functions
with fewer support are functions such as adding metadata, i.e., user annotations [17, 29]
and creating temporary mappings {UI.o} in order to support temporary decisions [35],
searching {UI.l} and filtering as other requirements for minimizing the user’s cognitive
load [1, 5, 17, 35]. In some cases, searching and filtering relate to searching/filtering
parts of the ontologies related to terms in mapping suggestions [35, 17] while in other
cases these relate to searching/filtering of mapping suggestions [5, 17, 29]. The mapping
process is a continuous process and the tool has to accommodate interruptions (sessions,
{UI.n})—saving and loading the ontologies and mappings is often possible but this
usually does not preserve any provenance information.

3 Issues vs Systems

In Table 1 we give an overview of the identified issues related to the system and user
interface and show if these are addressed in a number of systems. The systems con-
sidered in our study are those which incorporate the user validation in the alignment
process and have a mature user interface. In the table Xmarks that all of the listed items
are supported by the system while - marks that the issue is not covered by the system.
Combinations such as X- and X- - mark that one or two of the listed items are not
supported. Below we give more details about these systems as well as how they address
the issues.

AgreementMaker In AgreementMaker, [5, 7, 8] an initial alignment is computed which
is then iteratively altered according to the user feedback {Sys.d}. For every mapping
the system creates a signature vector containing its similarity values calculated by dif-
ferent matchers. The signature vector is then used during the processes of mapping
suggestions selection and feedback propagation {Sys.e} {Sys.f}. For every mapping a
disagreement metric is calculated—the disagreement is high when the similarity values
computed by the different matchers are in a wide interval. The system presents the top-k
mappings with the highest disagreement values for user validation. The mappings are
clustered based on their vectors and the user feedback is propagated to those with simi-
lar vectors to the vector of the mapping validated by the user applying a linear function
for both accepted and rejected mappings; already validated mappings are not updated
any longer and the same mapping is not shown again to the user, e.g., it is not validated
twice. The user can adjust the size of the feedback propagation cluster via a threshold.
The approach described in [6] also discusses blocking propagation in the context of
multi-user alignment. In this case the feedback propagation can be controlled via the
consensus of users for a given mapping suggestion {Sys.g−}. Conflict detection is not
discussed).

The ontologies are visualized as trees and their mappings are depicted as color-
coded lines representing the matcher that calculated the similarity value (the value itself
is shown as a number without an explanation {UI.h−−}). As described in [8] comments
and additional information are shown when a concept is selected {UI.f} {UI.a}. A vi-
sual analytics panel {UI.b} {UI.a} helps in comparing the similarity values calculated
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by the different matchers, their combination and ’disagreement’; it also shows the map-
pings in the same cluster {UI.c} {UI.d}. The user can adjust the size of the cluster and
visualize its members thus visualizing the impact of the validations {UI.g−}. In the
visual analytics panel the mappings are represented with matrices (one per matcher)
and are color-coded to represent accepted, rejected and manually created mappings
{UI.e−} (temporary mappings are not supported). The tool supports all {UI.a} of the
seven information visualization seeking mantra tasks with a different level of cover-
age: overview is supported by observing the lines representing the mappings; filtering
by different criteria {UI.a} can reduce the number of mappings shown to the user (by
threshold, by matcher, by number of mappings per concept); undo and redo {UI.a} are
supported as described in [8] but it is not clear if they are supported in later versions
and how undoing an action would affect the propagation algorithm. During the valida-
tion process the user can accept, reject {UI.j} and create mappings manually {UI.k}
(6 mappings types are supported). All mappings calculated for a particular concept are
shown to the user [36]. Sessions {UI.n−} are not directly supported but load and save
operations provide indirect support.

AlViz AlViz [35, 34] is a Protégé plugin which uses multiple views to visualize an
alignment produced by another plugin {UI.c}. During the alignment process each on-
tology is represented as a pair of views—a tree and a small world graph—i.e., four in
total. The views are connected by the linking and brushing paradigm where navigation
in one of the views changes the representation in the other. The nodes in the ontology
are clustered according to a selected relationship, called also a mutual property, and
level of detail, where the sizes of the clusters depend on the number of nodes in them
and the colors are determined by one out of three strategies {UI.d}. Color-coding shows
the degree of similarity and the type of the association but explicit similarity values are
not provided {UI.h−−}.

Mappings are edited, (indirectly) accepted and rejected {UI.j−} in the tree views
by using toolbar buttons for choosing between one out of six types of mappings, called
associations {UI.k} {UI.e−}. There is no clear distinction between mappings and map-
ping suggestions {UI.e−}. Temporary decisions for questionable mappings are sup-
ported by a tracking button {UI.e−}{UI.o}. A search field under the tree view is pro-
vided for each ontology {UI.l}

The tool supports many of the tasks from the information-seeking mantra {UI.a}—
overview by small world graphs, zoom in to selected level of detail, filter by mutual
property, details-on-demand by tooltips and labels, history by list of activities and
undo/redo buttons, and relate by different comparison strategies. Ranking and recom-
mendations at a mapping level are not provided but the color-coding of the clusters can
help in the identification of interesting regions and starting points {UI.g−−}. Sessions
can be considered supported by save and load {UI.n−}.

AML AML [18, 43] is a lightweight ontology matching system that focuses primar-
ily on scalability and coherence. While its matching algorithms are fully automated,
AML supports user interaction after the matching procedure {Sys.b}. It employs an
interactive selection algorithm based on the similarity scores produced by its various



matching algorithms {Sys.e} for picking candidates for revision, also taking into ac-
count ambiguous mappings. Additionally, it employs an interactive repair algorithm
that addresses conflicting mappings {Sys.g}. However, neither algorithm is yet avail-
able through its user interface. AML’s user interface displays two different views of
the alignment {UI.c}: a local graph view, where the user can visualize an individual
mapping and its local context, including related mappings {UI.d}; and a list view that
serves as an overview and enables the user to find further details about each mapping
(both structural and lexical) upon clicking {UI.f}. Additionally, the latter also enables
the user to review and reject mapping candidates {UI.j−}. AML’s menu enables the
user to customize the graph view, and offers the functionalities of searching the align-
ment for mappings {UI.l} and creating new mappings {UI.k} by searching through the
ontologies. While AML doesn’t explicitly implement sessions, it does allow the user to
save and load the alignment at any stage, and thus interrupt and resume their revision at
will {UI.n−−}.

CogZ/Prompt CogZ [17, 15] builds on PROMPT [40]. It is an extension of PROMPT’s
user interface and uses its other components to address cognitive requirements defined
in [17]. The matching process is iterative. The tool starts by making a list of initial
mapping suggestions which are then presented to the user. Based on the user’s vali-
dations, the tool will check for conflicts and proceed in building additional suggestions
which are based on the user’s previous input {Sys.d} {Sys.f}. The examples of conflicts
considered by the tool are name conflicts, dangling references, redundancy in the class
hierarchy, slot value restrictions that violate class inheritance [40] {Sys.g−−} (only
conflict detection, tool automatically deals with the conflicts, possible revalidations are
not discussed).

The ontologies in CogZ are represented as trees and mappings are represented as
dashed lines between concepts. Hovering over a mapping will show the explanation for
the mapping. The explanations are short natural language texts describing the reasons
why a certain mapping was selected {UI.h−} (confidence value not shown). Users can
also explore the neighborhoods of the terms in a mapping suggestion {UI.d} {UI.f}
{UI.i−−}. The user can define manually new mappings as well as add annotations
{UI.k} {UI.m}. Users can mark a mapping suggestion as a temporary mapping {UI.o}
{UI.e}. When the user is validating a mapping {UI.j} the tool presents mappings re-
lated to the parts of the ontology where the user is currently working on {UI.d}. The
candidate-heavy regions in this view can be identified by parts of the ontologies with
large concentration of lines between them {UI.g−−}, but no recommendations are
provided at a single mapping level. In addition, the user interface provides searching
{UI.l}/filtering {UI.a} for both ontologies and mapping suggestions. All of the tasks
considered in the visual information seeking manta are supported {UI.a} and the sys-
tem keeps track of user’s previous decisions and the user can at any time inspect the
mapping suggestions as well as already completed validations. In this way, the user can
follow his/her progress.

In [15] the authors show the alternate tree-map view {UI.c} which provides an
overview of the ontology and mapping suggestions. In this view ontologies are parti-
tioned into parts and color-coded depending on the number of mapping suggestions.



Thus, candidate-heavy regions can be identified through different color intensities. In
addition to this, this view provides a pie-chart for each branch of the ontology which
contains numbers of mapping suggestions, mapped concepts and concepts without as-
sociation.

The mappings can be stored and loaded from file thus the whole mapping process
does not need to be done in one occasion {UI.n−}.

COMA++ COMA++ [37, 1] is a system for aligning large schemas and ontologies.
The system supports the fragment-based matching strategy. In this strategy, the system
applies a divide-and-conquer approach where it aims at identifying similar fragments
of ontologies which are then matched. The user can validate the output from each phase
of this process (matching pairs of fragments) and the user’s validation will be used in
subsequent computations {Sys.c} {Sys.f}.

The ontologies are shown as trees and mappings are shown as lines between them;
the similarity values are color-coded in the lines’ colors {UI.h−−} and are shown on
hover. Therefore, regions with a large number of lines represent regions with many
mapping suggestions (candidate-heavy regions). Under each ontology there is a search
box {UI.l}. The tool has limited support for the information seeking tasks with filter,
history and relate not supported {UI.a−−}.

The system allows saving and loading generated mappings to the mapping repos-
itory {UI.n−}. Users can reject {UI.j−} or manually add new mappings {UI.k}, it
supports complex mappings, not only equivalence mappings. The system does not dif-
ferentiate in the interface between mapping suggestions and validated mappings neither
supports temporary mappings {UI.e−−}. If a user validates a mapping suggestion it is
assigned the highest confidence value.

LogMap LogMap [26] is an ontology matching system that implements scalable rea-
soning and diagnosis algorithms, which minimize any logical errors introduced by
the matching process. LogMap supports user interaction during the matching process,
which is essential for use cases requiring accurate mappings.

LogMap presents to the user only the mappings that are not “clear cut” cases {Sys.b}
{Sys.e}, for which user feedback would be highly beneficial. The number of such map-
pings can still be significant; hence, it is crucial to reduce the number of questions to
the human expert by applying automatic decisions based on users’ feedback. Automatic
decisions based on a particular user decision to accept or reject a mapping ({UI.j}) are
made according to two criteria: ambiguity and conflictness. That is, additional map-
pings will be (automatically) rejected/accepted if they were in conflict (i.e., lead to an
unsatisfiable class) or ambiguous (i.e., share the source or target entity) with the user
accepted/rejected mapping {Sys.f−−} {Sys.g}.

Each candidate mapping is presented to the user with a confidence value {UI.h−−},
information about the context/scope of the matched entities (i.e., superclasses and sub-
classes), and lexical information such as synonyms {UI.f}. In addition, the ambiguous
mappings and mappings in conflict are also presented in order to help the user under-
stand the consequences of the feedback {UI.i−}. The user can validate the mappings in
one or several sessions {UI.n} or end the interactive process at any time (the remaining



cases are decided heuristically). Finally, LogMap ranks mappings {UI.g−} according
to their impact on other mappings (i.e., mapping that have other mappings in conflict
are shown first).

SAMBO SAMBO [29, 31] is a session-based {UI.n} ontology alignment system. The
sessions are in the form of interruptible computation sessions. Users can thus begin the
validation process even before the completion of the computation. In addition, users
can specify points of interruptions, e.g., by specifying the number of concept pairs that
need to be processed before the interrupt and the validation process. The system is
iterative and computation sessions can reuse results from previous validations {Sys.d}
{Sys.f}. The validation decisions are also used in the recommendation of settings for the
alignment algorithms [50]. A PA can be used to reduce the search space [30] {Sys.a}.
Selection of mappings suggestions is controlled via different combination and filtering
strategies using the similarity values for different matchers ({Sys.e−}). It is possible to
include the reasoner to check the consistency of the validated mapping suggestions. If
conflicts are found they will be reported to the user (supports only checks for problems
within the logic in ontologies, users are asked to revalidate, {Sys.g−}).

The user interface is implemented in the form of tabs where each tab is related to
one part of the alignment process. The system groups together related mapping sugges-
tions {UI.d}. Related mappings are those which share the same terms. For every map-
ping suggestion, the user can select to either reject it or accept it as either a subsumption
relation or equivalence relation {UI.j}. The system also allows manual creation of map-
pings {UI.k} as well annotation of decisions {UI.m}, showing the annotation is how-
ever not easy {UI.f−−}. In the manual mode {UI.c}, the user is presented with a tree
view of the ontologies and needs to select one concept from each tree and the relation
between them in order to create a mapping manually {UI.e−}, temporary mappings are
not supported. In this view, the user can also search the ontologies {UI.l}.

Mainly the history task is supported from the seven information seeking tasks {UI.a−−}—
the system logs all user decisions which can then be reviewed. An undo button is sup-
ported as well. The user can also review remaining mapping suggestions which need
to be dealt with. Relate and details on demand are indirectly supported by grouping
mappings for a single concept together in the list view.

RepOSE RepOSE [23] is based on an integrated taxonomy5 alignment and debugging
framework. The system can be seen as an ontology alignment system with a debugging
component for detecting and repairing modelling defects (missing and wrong subsump-
tion relations/mappings) in taxonomy networks (both in the alignments and ontologies).
The alignment process goes through three phases - generation of mapping suggestions,
validation and repairing {Sys.b}. Selection of mappings suggestions is only controlled
by threshold values for different matchers {Sys.e}. During the repairing step for every
accepted mapping the user is given possibility to add a mapping which would make the
accepted mapping derivable. A limited form of recomputation as user feedback is used

5 Other versions of RepOSE deal with slightly more expressive ontologies, but focus more on
the debugging phase, e.g., [51].



in the repairing process {Sys.f}. The system checks for contradictions after each group
of suggestions is validated and after a repairing action and does not allow the current
action to take place if such are found {Sys.g}.

During the validation phase the mapping suggestions are shown as graphs in groups
where the last group in the list contains the most suggestions {UI.g} {UI.d}, thus the
user can choose the area to start with. The nodes are color-coded according to their host-
ing ontology and the edges - the state of the represented mappings - mapping sugges-
tions, added/rejected mappings ({UI.e−}, temporary mappings are not supported). The
justifications of the mappings inferred from the taxonomy network are presented to the
user as graphs, for the rest a tooltip that appears when the user hovers on an edge shows
the similarity value calculated by the (combination of) matchers ({UI.f−}{UI.h−−}—
only derivation path, no information on why the mapping was selected). If the current
user action contradicts with previous actions an error message is shown to the user
{UI.i−−}. Users can accept/reject mappings {UI.j}. During the validation and repair-
ing processes recommendations based on external knowledge are provided {UI.g} for
every mapping. Creating arbitrary mappings is not possible but some flexibility is pro-
vided during the repairing phase where the user can create a mapping that entails the
accepted mapping (mappings can be refined in the repairing phase {UI.k−}). The sys-
tem supports equivalence and subsumption mappings. Sessions are indirectly supported
(users can save/load mappings {UI.n−}). Some overview and details-on-demand (re-
garding mappings) tasks are supported ({UI.a−−}).

4 Experiments

In this section we report on experiments that address the issue of the knowledgeability
of the domain expert and its impact on the performance of alignment.

4.1 Set up

The SEALS client used to evaluate systems in OAEI was modified to allow interactive
matchers to pose questions regarding the correctness of a mapping to an oracle. The
interactive matcher can present a mapping suggestion to the oracle, which then tells
the system whether the mapping is correct or wrong. A request is considered distinct if
one of the concepts or the relationship in a mapping has changed in comparison with
previous requests. The oracles can be perfect or answer with a predefined error rate. In
this experiment the error rates are 10%, 20% and 30%. (Orxw represents an oracle with
x % error rate.)

We used three datasets of the OAEI: Conference, Anatomy and Large Biomedical
Ontologies (Large Bio). The Conference dataset covers 16 ontologies describing the
domain of conference organization. We only use the test cases for which an alignment
is publicly available (altogether 21 alignments/tasks). The Anatomy dataset includes
two ontologies (1 task), the Adult Mouse Anatomy (AMA) ontology and a part of the
National Cancer Institute Thesaurus (NCI) describing the human anatomy. Large Bio
consists of 6 tasks with different sizes ranging from tens to hundreds of thousands



classes and aims at finding alignments between the Foundational Model of Anatomy
(FMA), SNOMED CT, and the National Cancer Institute Thesaurus (NCI).

The evaluations of the Conference and Anatomy datasets were run on a server with
3.46 GHz (6 cores) and 8GB RAM allocated to the matching systems. Each system
was run three times and the final result of a system for each error rate represents the
average of these runs. For the Conference dataset with the ra1 alignment, we considered
macro-average of precision and recall of different ontology pairs, while the number of
interactions represent the total number of interactions in all tasks. Finally, the three runs
are averaged. The Large Bio dataset evaluation (each system was run once) was run on a
Ubuntu Laptop with an Intel Core i7-4600U CPU @ 2.10GHz x 4 and allocating 15GB
of RAM.

4.2 Systems and interaction

We used the participants from the OAEI Interactive track 20156: AML, JarvisOM, LogMap,
and ServOMBI. We note that not all of these systems have user interfaces, but they do
have the functionality to ask questions to an oracle.

The systems involve the user in different points of the execution and explore the
user input in different ways. Apart from JarvisOM, the systems all make use of user
interactions exclusively in post-matching steps. LogMap and AML request feedback on
selected mapping suggestions. AML filters mapping suggestions based on the user vali-
dations. It also uses a query limit and other strategies to minimize the user interaction.
LogMap interacts with the user to decide on mapping suggestions which are not clear-
cut cases. ServOMBI employs the user to validate all its mapping suggestions and uses
the validations and a stable marriage algorithm to decide on the final alignment. Jarvi-
sOM is based on an active learning strategy known as query-by-committee. At every
iteration JarvisOM asks the user for pairs of entities that have the highest disagreement
between committee members and lower average euclidean distance. In the last iteration,
the classifiers committee is used to generate the alignment.

4.3 Results

The first six columns in each of the tables present the results obtained in this and the
non-interactive Anatomy track (marked as Prec non., F-m. non and Rec. non in the ta-
bles). The ”Prec. Oracle”, ”Rec. Oracle” and ”F-m. Oracle” columns contain the eval-
uation results ”according to the oracle”, meaning against the oracle’s alignment i.e. the
reference alignment as modified by the randomly introduced errors. Next, ”Tot Req.”,
”Dist. Req.” give the total number and number of distinct requests to the oracle. ”TP”,
”TN”, ”FP” and ”FN give the number of true positive, true negative, false positive and
false negative answers from the oracle.

Results for the anatomy dataset Tables 2, 3, 4 and 5 present the results for the
Anatomy dataset for the all-knowing oracle and oracles with three different error rates.

6 http://oaei.ontologymatching.org/2015/interactive/



Figure 1 shows the time intervals between the questions to the user/oracle for the
different systems and error rates for the three runs (the runs are depicted with different
colors).

For each system, its strategy for introducing user interaction, leads to an improve-
ment of precision and F-measure while the recall improves or stays the same. JarvisOM
displays the largest improvement —the F-measure improves almost 4,5 times and the
size of the alignment generated by the system also grows around 2,5 times.

We first compare the performance of each of the four systems with an all-knowing
oracle (Or0w - Table 2), in terms of precision, recall and F-measure, to the non-interactive
versions of the systems (these are the first 6 columns in the corresponding tables). For
each system, its strategy for introducing user interaction, leads to an improvement of
precision and F-measure while the recall improves or stays the same. JarvisOM displays
the largest improvement —the F-measure improves almost 4,5 times and the size of the
alignment generated by the system also grows around 2,5 times.

With the introduction of an erroneous oracle/user and moving towards higher error
rates, system performance starts to slightly deteriorate in comparison to the all-knowing
oracle. However, the changes in the error rates influence the four systems differently
in comparison to the non-interactive results. While the AML performance with an all-
knowing oracle is better on all measures with respect to the non-interactive results, the
precision drops in the Or20w and Or30w cases (Tables 4 and 5), while the recall stays higher
than the non-interactive results for all error rates. LogMap behaves in the opposite way,
i.e., recall in the Or20w and Or30w cases drops below the non-interactive results, while
the precision stays higher in all error rates. For ServOMBI the F-measure and recall
drop below the non-interactive results already in the Or10w case (Or10w - Table 3), but the
precision is higher in all cases. In contrast JarvisOM performs better in the interactive
cases on all measures than in the non-interactive cases where it achieved very low values
for all measures. We note the large drop in precision (around 35 percentage points) for
JarvisOM with the growing error rates in comparison to the other three systems where
the drop in precision is between 1 to 5 percentage points. This could be explained by
the fact that JarvisOM asks only few questions and is therefore very sensitive to false
positives and false negatives. Another interesting observation is that, with the exception
of AML, the performance of the systems also declines as the error increases with regard
to the oracle’s reference. This means that the impact of the errors is linear for AML
(i.e., one erroneous response from the oracle, leads to only one error from AML) but
supralinear for the others.

Regarding requests AML, JarvisOM and LogMap do not present the same question
again to the user, while ServOMBI does.

For AML the size of the alignment and the number of (distinct) requests to the oracle
is stable across the different error rates. JarvisOM uses very few requests and this num-
ber is stable across the different error rates. Another notable difference is the varying
size of the alignment generated by JarvisOM which almost doubles in the Or20w case
comparing to the all-knowing oracle. For LogMap the number of requests grows with
the error rate together with a slight grow in the alignment size. ServOMBI asks the user
for every mapping suggestion found and the number of distinct requests for ServOMBI
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Fig. 1: The Y axis depicts the time intervals between the requests to the user/oracle
(whiskers: Q1-1,5IQR, Q3+1,5IQR, IQR=Q3-Q1). The labels under the system names
show the average number of requests and the mean time between the requests for the
three runs.

stays stable for the different rates. The total number of requests is almost double the
distinct ones while the size of the alignment drops when introducing higher error rates.

The run times between the different error rates do not significantly change for AML,
LogMap and JarvisOM. The ServOMBI run time decreases with the increase of the error
rate. In comparison to the non-interactive track, LogMap’s and JarvisOM’s run times
do not change. AML’s run time is between 10 to 20 % higher in the interactive track.
ServOMBI’s run time is higher in the non-interactive track.

For an interactive system the time intervals at which the user is involved in an inter-
action are important. Figure 1 shows the boxplots regarding the time periods at which
the systems present a question to the user. Across the three runs and different error rates
the AML and LogMap request intervals are around 1 and 0 milliseconds respectively. On
the other hand, while the requests periods for ServOMBI are under 10 ms in most of
the cases there are some outliers requiring more than a second. Furthermore, a manual
inspection of the intervals showed that in several cases it takes more than 10 seconds
between the questions to the user and in one extreme case 250 seconds. The requests
intervals for this system increase at the last 50–100 questions. JarvisOM displays a de-
lay in its requests in comparison to the other systems. The average interval at which a



question is presented to the user is 1 second with about half of the requests to the user
taking more than 1.5 seconds. However, it issues the questions during the alignment
process and not as a post processing step.

Results for the conference dataset Tables 6, 7, 8 and 9 present the results for the
Conference dataset with the perfect oracle and oracles with three different error rates.
Figure 2 shows the average requests intervals per task (21 tasks in total per run) between
the questions to the oracle for the different systems and error rates for all tasks and
the three runs (the runs are depicted with different colors). The first number under the
system names is the average number of requests and the second number is the average
period of the average requests intervals for all tasks and runs.

We first compare the performance of the systems with an all-knowing oracle (Table
6) to the performances of their non-interactive versions for the Conference track. The
biggest improvement in F-measure is achieved by ServOMBI with 23 percentage points.
Other systems also show substantial improvements, AML improves the F-measure by 8,
JarvisOM by 13 and LogMap by around 4 percentage points. In the case of ServOMBI
and LogMap interaction with the user improved precision while recall was improved
only slightly. On the other hand, for JarvisOM recall improved substantially while keep-
ing a similar level of precision. Finally, the precision for AML improved by 10 and recall
by 6 percentage points which contributed to a higher F-measure.

As expected, the results start deteriorating when introducing the error in the ora-
cle’s answers. Interestingly, even with the Or30w (Table 9) most systems perform similar
(with respect to the F-measure) to their non-interactive version. For example, AML’s F-
measure in the case with Or30w is only 1 percentage point worse than the non-interactive
one. The most substantial difference is in the case of ServOMBI with an oracle Or30w
where the system achieves around 5 percentage points worse result w.r.t. F-measure
than in the non-interactive version. Again closer inspection shows that different systems
are affected in different ways when errors are introduced. For example, if we compare
the all-knowing oracle and the Or30w case, we can see that for AML, precision is affected
by 11 and recall by 6 percentage points. In the case of JarvisOM, precision drops by 19
while recall drops by only 4 percentage points. LogMap is affected in a similar manner
and its precision drops by 9 while the recall drops by only 3 percentage points. Finally,
the most substantial change is in the case of ServOMBI where the precision drops from
100% to 66% and the recall shows a drop of 22 percentage points. Like in the Anatomy
dataset, LogMap and ServOMBI also show a drop in performance in relation to the ora-
cle’s reference with the increase of the error rate, which indicates a supralinear impact
of the errors. AML again shows a constant performance that reflects a linear impact of
the errors. Also JarvisOM shows a constant performance, which is a different behavior
than in the anatomy case.

When it comes to the number of requests to the oracle, 3 out of 4 systems make
around 150 requests while ServOMBI does most requests, namely 550. AML, JarvisOM
and LogMap do not repeat their requests while around 40% of requests made by Ser-
vOMBI are repeated requests. Across the three runs and different error rates the AML
and LogMap mean times between requests for all tasks are less than 3 ms. On the other
hand, mean time between requests for ServOMBI and JarvisOM are around 30 and 10
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Fig. 2: The Y axis depicts the average time between the requests per task in the Con-
ference dataset (whiskers: Q1-1,5IQR, Q3+1,5IQR, IQR=Q3-Q1). The labels under the
system names show the average number of requests and the mean time between the
requests (calculated by taking the average of the average request intervals per task) for
the three runs and all tasks.

ms respectively. While in most cases there is little to no delay between requests, there
are some outliers. These are most prominent for ServOMBI where some requests were
delayed for around 2 seconds which is substaintally longer than the mean.

Results for the Large Bio dataset Tables 10, 11, 12 and 13 present the results for the
Large Bio dataset for the all-knowing oracle and oracles with three different error rates.

Figure 3 shows the average requests intervals per task (6 tasks in total) between the
questions to the oracle for the different systems and error rates for all tasks and a single
run. The first number under the system names is the average number of requests and the
second number is the average period of the average requests intervals for all tasks in the
run.

With an all-knowing oracle (Table 10), AML, LogMap and ServOMBI all improved
their performance in comparison with their non-interactive versions in the Large Bio
track. The biggest improvement in F-measure was achieved by LogMap with 4, followed
by AML with 3, then ServOMBI with 2 percentage points. AML showed the greatest im-
provement in terms of recall, but also increased its precision substantially; LogMap had
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Fig. 3: The Y axis depicts the average time between the requests per task in the Large
Bio dataset (6 tasks) (whiskers: Q1-1,5IQR, Q3+1,5IQR, IQR=Q3-Q1). The labels un-
der the system names show the average number of requests and the mean time between
the requests (calculated by taking the average of the average request intervals per task)
for the three runs and all tasks.

the greatest improvement in terms of precision, but also showed a significant increase
in recall; and ServOMBI improved essentially only with regard to precision, obtaining
100% as in the other datasets.

The introduction of user errors had a very different effect on the three systems: AML
shows a slight drop in performance of 3 percentage points in F-measure between Or0w
and Or30w (Table 13), and is only slightly worse than its non-interactive version with
Or30w ; LogMap shows a more pronounced drop of 6 percentage points in F-measure; and
ServOMBI shows a substantial drop of 17 percentage points in F-measure. Unlike in
the other datasets, all systems are affected significantly by the error with regard to both
precision and recall. Like in the other datasets, AML shows a constant performance in
relation to the oracle’s reference, indicating a linear impact of the errors, whereas the
other two systems decrease in performance as the error increases, indicating a supralin-
ear impact of the errors.

Regarding the number of requests to the oracle, AML was the more sparing system,
with only 10,217, whereas LogMap made almost three times as many requests (27,436).
ServOMBI was again the more inquisitive system, with 21,416 requests on only the



two smallest tasks in the dataset (for comparison, AML made only 1,823 requests on
these two tasks and LogMap made 6,602). As in the other datasets, ServOMBI was the
only system to make redundant requests to the oracle. Interestingly, both LogMap and
ServOMBI increased the number of requests with the error, whereas AML had a constant
number of requests.

Figure 3 presents a comparison between the systems regarding the average time
periods for all tasks at which the system presents a question to the user. Across the dif-
ferent error rates the average requests intervals for all tasks for AML and LogMap are
around 0 millisecond. For ServOMBI they are slightly higher (25 milliseconds on aver-
age) but a manual inspection of the results shows some intervals larger than 1 second
(often those are between some of the last requests the system performs).

4.4 Discussion

Our experiments corroborate the suggestion in [26] that as long as the error rate is less
than 30%, the validation is beneficial. The performance of the systems deteriorated with
the increase of the error rate. Errors had different impact on different systems reflecting
the different interactive strategies employed by the systems. In some cases erroneous
answers from the oracle had the highest impact on the recall, in other cases on the
precision, and in others still both measures were significantly affected. The impact of
the errors was linear in some systems and supralinear in others. A supralinear impact of
the errors indicates that the system is making inferences from the user and thus deciding
on the classification of multiple mapping suggestions based on user feedback about
only one. This is an effective strategy for reducing the burden on the user, but leaves
the matching system more susceptible to user errors. An extreme example of this is
JarvisOM on the Anatomy dataset, as it uses an active-learning approach based on solely
7 user requests, and consequently is profoundly affected when faced with user errors
given the size of the Anatomy dataset alignment. JarvisOM behaves very differently in
the Conference dataset, showing a linear impact of the errors, as in this case 7 requests
(which is the average number it makes per task) represent a much more substantial
portion of the Conference alignments ( 50%) and thus leads to less inferences and less
impact of errors.

As ServOMBI employs the user to validate all its mapping suggestions, there are
much more user requests than for the other systems, and in being the system most
dependent on the user, is also the one most affected by user errors.

Regarding the number of user requests, we note that ServOMBI and LogMap gener-
ally increased the number of requests with the error, whereas AML and JarvisOM kept
their number approximately constant. The increase is natural, as user errors can lead to
more complex decision trees when interaction is used in filtering steps and inferences
are drawn from the user feedback (such as during alignment repair) which leads to an
increased number of subsequent requests. JarvisOM is not affected by this because it
uses interaction during matching and makes a fixed 7-8 requests per matching task,
whereas AML prevents it by employing a maximum query limit and stringent stopping
criteria.

Two models for system response times are frequently used in the literature [9]. The
Shneiderman model takes a task-centred view and uses four categories according to task



complexity: typing, mouse movement (50-150 ms), simple frequent tasks (1 s), common
tasks (2-4 s) and complex tasks (8-12 s). It is suggested that the user is more tolerable to
delays with the growing complexity of the task at hand. Unfortunately, no clear defini-
tion is given for how to define the task complexity. The Seow model looks at the prob-
lem from a user-centred perspective by considering the user expectations towards the
execution of a task. The categories are instantaneous (100-200 ms), immediate (0.5-1 s),
continuous (2-5 s) and captive (7-10 s). Ontology alignment is a cognitively demanding
task and can fall into the third or fourth categories in both models. In this regard the
response times (in our paper the request intervals) observed with the Anatomy dataset
(with the exception of several measurements for ServOMBI) fall into the tolerable and
acceptable response times in both models. The same applies for the average requests
intervals for the 6 tasks in the Large Bio dataset. The average request intervals for the
Conference dataset are lower (with the exception of ServOMBI) than those discussed
for the Anatomy dataset. However, very low system response times may not always be
needed as the user needs sufficient time for the validation of mapping suggestions.

5 Conclusions and Future Work

User validation is increasingly relevant in ontology alignment. Despite the advances
in automated techniques, user validation remains critical in achieving higher quality
alignments. In this paper we identified a number of issues concerning user validation
in the ontology alignment process, focusing on three issues that highlight three rele-
vant aspects of user involvement in ontology alignment: the influence of user expertise,
the exploration of user input by the ontology alignment systems services and the im-
pact of user interfaces in supporting interaction and involvement. These issues have re-
ceived very little concerted attention in the field. Through literature review we showed
how different state-of-the-art systems deal with these issues, providing a categorization
of systems in what regards user involvement support. We also conducted experiments
where we demonstrated the impact of user validation and of user errors on the qual-
ity of the alignment. Ascertaining the impact of user expertise is particularly relevant
for domains where expert effort is costly, which is certainly the case of the biomedical
domains employed in some of our experiments.

There are a number of directions for future work. In order to enhance usability,
there is a need for best practices and guidelines for good UI design which should then be
aligned with the ontology matching system design. In order to identify the requirements
for different user types more studies are needed with real users, with varying degrees
of expertise. Moreover, studies dedicated to alignment validation by multiple users,
and to minimizing user burden are also needed, in order for instance to investigate the
integration of expert knowledge and crowdsourcing.
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